

SEQUOIA MOSAIC 3000:

INTERNET-ACQUIRING PLATFORM

Merchant manual

User's manual for merchants

Version 1.0

This page doesn’t contain any information

SM 3000: IAP 2

Content

Chapter 1. About the document 5
1.1. Purpose of the document 7

1.2. How to use this manual 7

1.3. Classification 7

1.4. Document sheet 7

1.5. Document contacts 7

1.6. Document history 7

Chapter 2. Getting started 9
2.1. General information 11

2.2. Access registration and recovery 11

2.3. Service creation 13

Chapter 3. Payment method setup 17
3.1. General information 19

3.2. Directing the user to a specific payment method 20

3.3. Payment button 22

3.4. Payment button with variables 24

3.5. Short link (order creation) 25

3.6. QR-code 29

3.7. Card payments tests 30

Chapter 4. Application programming interfaces 31
4.1. General information 33

4.2. Data sending format by the partner request 34

4.3. Getting additional parameters about a transaction (webhook notifications) 36

4.4. Transfer of extended transaction data (custom_fields, airline tickets) 38

Chapter 5. Request authentication 41
5.1. General information 43

5.2. Keys for the request authentication 44

5.3. Signature creation algorithm 46

5.4. System IP addresses 53

Chapter 6. Additional options 55
6.1. General information 57

6.2. Background initiation of payment 57

6.3. Requesting information about a transaction 66

C
O

N
TE

N
T

Merchant manual Content

6.4. Pre-authorization (additional request about the possibility of making a payment) 69

6.5. Two-stage payments (holding funds on a card) 70

6.6. Refund of payments (refund) 71

6.7. API for sending and receiving payment / refund checks 77

6.8. Payment cancellation (reversal) 78

6.9. Description of the recurring payment scheme (RP) 79

6.10. Saving data of the payer's card 83

6.11. Using tokens (card tokens) with libraries for mobile applications 84

Chapter 7. Reports 87
7.1. General information 89

7.2. Payments report 90

7.3. Transactions report 91

7.4. Configuring notifications about successful transactions 92

7.5. Sending of acts and details by e-mail 93

Chapter 8. Attachments 95
3.1. Terms and abbreviations 97

3.2. External documents references 99

SM 3000: IAP 4

Chapter 1. About the document

This chapter contains the next sections:

Section Description Page

1.1. Purpose of the document 7

1.2. How to use this manual 7

1.3. Classification 7

1.4. Document sheet 7

1.5. Document contacts 7

1.6. Document history 7

C
H

A
PT

ER
 1

. A
bo

ut
 th

e
do

cu
m

en
t

Merchant manual Chapter 1. About the document

This page doesn’t contain any information

SM 3000: IAP 6

Merchant manual Chapter 1. About the document

1.1. Purpose of the document

This document describes how to work with a SM 3000 Internet-acquiring platform as a merchant. This
document was prepared for users of the SM 3000 Internet-acquiring platform.

1.2. How to use this manual

The manual is designed to provide the principal information to the User about service registration, payment
options setup, light-api (based on the button payment) etc.

The terms, abbreviations and useful references to other documents about the SM 3000 system are provided
at the final part of the document.

Terms and Abbreviations - a glossary of terms commonly used in the card processing and electronic funds
transfer industry.

1.3. Classification

This document has been classified as External.

1.4. Document sheet

200201

1.5. Document contacts

In the case of questions or proposals about information presented in this document, you can contact Alfeba's
Documentation Division by email doc@alfeba.com, by phone +598 2 208 31 42 or by mail, using the
address: Av. Agraciada 2770, Montevideo, 11823, Uruguay.

1.6. Document history

Version Date Modification Notes Authors

1.0 29.07.2020 - Init. Version Natalia Bogorodskaya

SM 3000: IAP 7

Merchant manual Chapter 1. About the document

This page doesn’t contain any information

SM 3000: IAP 8

Chapter 2. Getting started

This chapter contains the next sections:

Section Description Page

2.1. General information 11

2.2. Access registration and recovery 11

2.3. Service creation 13

C
H

A
PT

ER
 2

. G
et

tin
g

st
ar

te
d

Merchant manual Chapter 2. Getting started

This page doesn’t contain any information

SM 3000: IAP 10

Merchant manual Chapter 2. Getting started

2.1. General information

In this chapter we provide the principal information how you can register independently a new account and
immediately start testing payment with bank cards without going to the office, using a Sequoia Mosaic 3000
Internet-acquiring platform [SM3000 IAP].

2.2. Access registration and recovery

2.2.1. Registration

To registrar your account with a Platform you have to contact your Payment operator/ Facilitator.

2.2.2. Authorization

To enter to the Platform you have to input your login and password in the authorization form:

SM 3000: IAP 11

Your merchant

Merchant manual Chapter 2. Getting started

2.2.3. Recovery

To recover your password you have to press the Password recovery link on the main page and to input
your login name and e-mail:

SM 3000: IAP 12

Your merchant

Merchant manual Chapter 2. Getting started

2.3. Service creation

If you have several stores hosted on different servers, we suggest that you set up a separate Service for
each site. You will be able to flexibly manage the settings of each Service, while the accounting of
transactions will be general.

When a service is identified, its ID (indicated on the left in the list of services) and secret_key
are involved.

To create a service, go to the Merchant profile website homepage in your personal account. Then select the
section "Tools", subsection "Services" and click on the button "Add service".

You can do it by clicking on the name of the service also.

SM 3000: IAP 13

!

Merchant manual Chapter 2. Getting started

The fields description is provided in the Table 2.3.0.0.

SM 3000: IAP 14

Merchant manual Chapter 2. Getting started

Table 3.2.0.0. The new service page fields description

Field name Field format Data format Description

Name Text Text The text specified in this field will be displayed as the seller

Receive additional payment
parameters

Bool Bool Yes/ No option to receive additional payment parameters

Script URL for additional
payment options

Text Script This script will be called to transfer additional payment
parameters. You can receive information on partial payment,
etc. If you do not need to perform actions related to accounting
for money, then the handler script can be omitted.

Confirmation on product
reservation

Logic Logic Is an option to confirm on product reservation:
• No,
• Once,
• Every attempt to pay

Successful Purchase Page
URL

Link Link Is a page to which the user will be redirected after successful
payment with the transfer of all payment parameters

Error page URL Link Link Is a page to which the user will be redirected if an error occurs
during the payment

The secret key Text Text Is a key by which you can confirm the accuracy of the
transmitted data. If you specified the address of the handler
script, then you should also specify the secret key

E-mail Text Text Optional field. In case of successful payment, confirmation will
be sent to this email

When making a payment,
be sure to indicate: Phone
number

Bool Bool if you need to receive phone numbers from users (to send a
username and password, notify, etc.), then using this parameter
you can make these fields mandatory.

When making a payment,
be sure to indicate: E-mail

Bool Bool if you need to receive email from users (to send a username
and password, notify, etc.), then using this parameter you can
make these fields mandatory.

Notify customers about
transaction status: Via e-
mail

Bool Bool The payer will receive a letter when initiating a transaction, as
well as at the end of the transaction.

Send a check: send by e-
mail

Bool Bool If marked - the customer will receive the ticket of the bought by
e-mail

Payment options Bool Bool To choose the payment methods that you want to offer your
customers. You cannot choose less than one method.

Accept payments only from
specified domains

Bool Bool Payment will be made only if the request came from one of the
indicated domains.
Domain delimiters: space, comma, semicolon.

SM 3000: IAP 15

Merchant manual Chapter 2. Getting started

This page doesn’t contain any information

SM 3000: IAP 16

Chapter 3. Payment method setup

This chapter contains the next sections:

Section Description Page

3.1. General information 19

3.2. Directing the user to a specific payment method 20

3.3. Payment button 22

3.4. Payment button with variables 24

3.5. Short link (order creation) 25

3.6. QR-code 29

3.7. Card payments tests 30

C
H

A
PT

ER
 3

. P
ay

m
en

t m
et

ho
d

se
tu

p

Merchant manual Chapter 3. Payment method setup

This page doesn’t contain any information

SM 3000: IAP 18

Merchant manual Chapter 3. Payment method setup

3.1. General information

In this chapter we provide the principal information how you can setup the payment method.

Depending on the specifics of the merchant, you can select one or several options to initiate a payment
transaction.

Possible options are provided in the Picture 3.1.0.0. below.

Picture 3.1.0.0. Payment methods options

Payment button - HTML form with data
required for payment

Use on websites of our own design. You
can transfer your own payment
parameters (amount, purpose, etc.) to
HTML form fields.

https://
URL or ShortenURL, after clicking on which
the form for choosing a payment method is
displayed.

Sending payment links through any
messaging systems. In the URL
parameters, you can dynamically change
the parameters of the payment
transaction.

Link to dynamic graphic image (QR code)

Placing the QR code online on websites
or offline on any physical media

Plug-in module

If your site uses any CRM system, using
ready-made modules, you can connect
payment in a very short time

External API - Web service for initiating a
payment transaction

This method is suitable for merchants
who form their own choice of payment
method. When using this mechanism,
you can create a payment transaction
without displaying the pages of the
payment system

PAY

SM 3000: IAP 19

Merchant manual Chapter 3. Payment method setup

3.2. Directing the user to a specific payment method

You can direct the user immediately to the interface of the selected payment system, bypassing the payment
selection window. To do this, add the required parameters to the parameters listed above. We describe them
in the Table 3.2.0.0.

Available values for the payment_type parameter are presented in the Table 3.2.0.1.

Table 3.2.0.0. Additional parameters description

Parameter’s name Value Description

payment_type the type of payment to which the payer
should be sent

The available parameter values are shown in the table
3.2.0.1.

phone_number payer's telephone number For example 9841135147

verbose the parameter specifies what to do in
the case of an error, if there is no data
about the user (mail or phone for
payment methods, where they are
required)

1 - shows error
0 - shows the payment selection page

email customer email this field is required for recurring payments, for other
payment options, the need for input is regulated in the
service settings

Table 3.2.0.1. Available values for the payment_type parameter

Value Description

spg credit cards

spg_test credit cards, test connection

SM 3000: IAP 20

Merchant manual Chapter 3. Payment method setup

Example of the credit card payment

1 <form method="POST" class="application" accept-charset="UTF-8" action=«https://partner.gps.com/

alba/input/">

2 <input type="hidden" name="key" value="b5/uqup/i/ueWBrRyp9V0n97zyHty5YtV5u/NW27nlk=” />

3 <input type="hidden" name="cost" value="1" />

4 <input type="hidden" name="name" value=«Name of the service"/>

5 <input type="hidden" name="phone_number" value="74951234567"/>

6 <input type="hidden" name="email" value="customer@site.ru" />

7 <input type="hidden" name="payment_type" value="spg" />

8 <input type="hidden" name="verbose" value="0" />

9 <input type="hidden" name="order_id" value="0" />

10 <input type="image" style="border:0;" src=«https://partner.gps.com/gui/images/a1lite_buttons/

button_large.png" value="Pay" />

11 </form>

SM 3000: IAP 21

Merchant manual Chapter 3. Payment method setup

3.3. Payment button

To set up the Button manually you should open the Service menu of the Tools bar and press the Basket pic
as shown below:

The Create payment button page will be opened. On this page you should input the Name of the product or
the Service to the correspondent field of the page and the product price, Button type as shown below:

SM 3000: IAP 22

Merchant manual Chapter 3. Payment method setup

After the Create button code pressing - the code will be shown in the correspondent field of the page.

Copy this HTML button code and paste it on the product or service page. Please do not change
the value of the key parameter. This is important for the button to work properly.

SM 3000: IAP 23

!

Merchant manual Chapter 3. Payment method setup

3.4. Payment button with variables

A variable payment button means that you can create a payment button with your own payment options.

To create a payment button not for a single product, but for different products (for example, if you have an
online store), you need the script on your website to substitute the name of the product and its price when
generating the button. To do this, when creating a button, select the parameter “Pass to the script through
variables” and instead of the parameter values in brackets ([COST], [NAME]) insert the variables of your
script.

To do it press link Pass to script through variables on the page of Create payment button:

and continue by the same process that is describe in the previos section.

SM 3000: IAP 24

Merchant manual Chapter 3. Payment method setup

3.5. Short link (order creation)

You can create a custom link that immediately opens the payment window (without having to click a button
on the website). This is convenient if you sell products via social networks, issue various invoices for
payment, etc.

On the Create payment button page activate Create a link:

The correspondent page will be oponed. On the page input Product name, price, e-mail into the
correspondent fields and choose a Payment method as shown below:

When you click the "Send invoice" button, the link will be sent to your email address.

SM 3000: IAP 25

Merchant manual Chapter 3. Payment method setup

Attention! A link is a generator. With each click on the link, the payer generates a new
transaction. The transaction can be paid within the next 48 hours, but the link is valid
indefinitely! If you want to limit the validity of the link, use the appropriate option: check the
"Limit time to" checkbox and specify the date and time of the expiration.

In the case of "There is already an order with order_id XXXXX. Old number XXXXXXXXX»
remember, that it isn’t error!

There is a mechanism for checking the order number (order_id) for uniqueness. It's not a mistake. The
warning you see in such cases is the result of this check.

A link or button is a generator. Each transition through it is an attempt to create a new transaction with the
number that the link is currently transmitting. Transferring the same order number from the store admin
(CMS) leads to the same result.

An example of a link containing an order number:

https://partner.gps.com/alba/input/?

name=Rent_hall&cost=15200&key=Agl%2FskVOgsU6ZizcKvXjIlWhNJPyYri9x0J%2B

Y9ex6C0%3D&default_email=&order_id=192032

An example of an algorithm for receiving a warning:

• The first click created transaction 3950000001 with order number 192032. Payment failed, the payer
closed the browser.

• After a while, the payer clicked on this link again. The bank gateway tried to create transaction
3950000002 with order number 192032.

• Warning. The existence of two different transactions with the same number is impossible!

If you want to avoid this behavior, pass a new order number for each click on the button from the cart or link.
If you continue to receive the warning "There is already an order with order_id XXXXX. Old

number XXXXXXXXX", then your store sends the same message for every click. You can verify the
existence of a transaction with the "old" number indicated in the warning by checking the "Reports" section.

SM 3000: IAP 26

!

!

Merchant manual Chapter 3. Payment method setup

3.5.1. Creating a payment link using the API

The service https://partner.gps.com/alba/build_link/input_short/ should be sent all the
parameters that will go to the payment initiation URL (/ alba / input). The response will be in JSON format. If
all the data is correct, then there will be status = ”ok”, and the “url” will contain a short link.

Description of available parameters in the Section 4.2. of the Manual.

Example:

Message request format

https://partner.gps.com/alba/build_link/input_short/?
name=Тестовая+оплата&cost=10&key=GX4XuBD4myLEaU7k4lSyxvJ0TjVN%2Bhr2uy6OsoAhTm4=&
email=test@test.ru&order_id=0

Message response format

{“status”:”ok”,”url”:”http:\/\/sh.gps.com\/xxxxxx”}

The "key" parameter must not contain the "+" sign.

SM 3000: IAP 27

THE MERCHANT
SERVER

SM3000
INTERNET-ACQUIRING

PLATFORM

message request

message response

!

Merchant manual Chapter 3. Payment method setup

3.5.2. How does it work?

With the help of a short link, you can send invoices to your customers for payment via your Twitter, Facebook
or email newsletter directly. This is how it can look:

When clicking on the link, the client will see a standard Payment operator eCommerce payment window:

SM 3000: IAP 28

Fedor! We offer you to buy
new wonderful watch for
your collection with a great
discount! To buy it go here:
http://sh.gps.com/xBw9eH9i

Merchant manual Chapter 3. Payment method setup

3.6. QR-code

With this functionality, you can create a special QR code for payment. The main advantage of a QR code is
its easy recognition by scanning equipment (including a mobile phone camera), which makes it possible to
use it in trade, production, and logistics. Due to the ease of use, QR codes are gaining popularity and they
can be seen in everyday life more and more often. Most modern smartphones by default or using special
applications can recognize a QR code. You create a QR and can use it in print ads or on a website. The user
uses the phone to recognize the code and follows the hard-coded link to the Payment operator eCommerce
payment window adapted for mobile phones. Follow the path TOOLS → SERVICES in the Payment operator
eCommerce Personal Account merchant profile page. Click on Create button next to an existing service.
Click on the Create QR Code hypertext. Now enter the product name and cost (additional parameters are
hidden by the [+] sign) and click on the CREATE BUTTON CODE. After that, the HTML code of the picture
with the QR code will be generated:

3.6.1. API usage for the QR-code creation

The link for the QR code image can also be obtained through the API: at https://partner.gps.com/

alba/build_link/input_qr/ you should pass all the parameters that will go to the payment initiation
URL (/ alba / input). The response will be in JSON format. If all the data is correct, then it will be status =
”ok”, and the “url” will contain the URL of the QR code image.

Description of the available parameters in the Section 4.2. of the Manual.

SM 3000: IAP 29

Merchant manual Chapter 3. Payment method setup

3.7. Card payments tests

When you create an account, the Visa / MasterCard channel (spg_test) is automatically available for use.
Transactions through this channel are a full-fledged transaction without using real money.

You can use both test and any real-life cards issued by Nepal issuers.

The test channel has a 15% commission. A transaction made on such a channel will not change
the balance on the payer's card.

You can initiate a test transaction using your personal account. To do this, use the link generator
functionality described in the section 3.5. of the Manual.

In the Table 3.7.0.0. we provide test card details.

Table 3.7.0.0. Test cards details

Payment system Card number (PAN) Exp. date CVC

VISA International 4300 0000 0000 0777 11/2022 any

VISA International 4111 1111 1111 1111 12/2024 123

MasterCard International 5555 5555 5555 4444 any > current date any

SM 3000: IAP 30

!

Chapter 4. Application programming interfaces

This chapter contains the next sections:

Section Description Page

4.1. General information 33

4.2. Data sending format by the partner request 34

4.3. Getting additional parameters about a transaction (webhook notifications) 36

4.4. Transfer of extended transaction data (custom_fields, airline tickets) 38

C
H

A
PT

ER
 4

. A
pp

lic
at

io
n

pr
og

ra
m

m
in

g
in

te
rf

ac
es

Merchant manual Chapter 4. Application programming interfaces

This page doesn’t contain any information

SM 3000: IAP 32

Merchant manual Chapter 4. Application programming interfaces

4.1. General information

In this chapter we describe how do you can build your own universal solution without resorting to using
modules for popular CMS, using the API of the SM3000 IAP.

The API supports POST requests containing JSON arguments. For the successful execution of requests, a
number of conditions must be met:

• use correct secret_key

• use correct service_id

• apply Content-Type: application / x-www-form-urlencoded in request header

To read more about Secret keys see the Section 5.2. of the Manual.

To read more about Service ID please see the Section 2.3. of the Manual.

SM 3000: IAP 33

Merchant manual Chapter 4. Application programming interfaces

4.2. Data sending format by the partner request

The client is redirected to the Bank's system using the following HTML form.

Request format:

1 <form method="POST" class="application" accept-
charset="UTF-8" action="https://partner.gps.com/alba/input/">
2 <input type="hidden" name="key" value="b5/uqup/i/
ueWBrRyp9V0n97zyHty5YtV5u/NW27nlk=" />
3 <input type="hidden" name="cost" value="1" />
4 <input type="hidden" name="name" value=«Service name"/>
5 <input type="hidden" name="email" value="mail@example.com" />
6 <input type="hidden" name="order_id" value="0" />
7 <input type="image" style="border:0;" src="https://partner.gps.com/
gui/images/alba_buttons/button_large.png" value="Pay" />
8 </form>

Parameters required to initialize the payment are provided in the Table 4.2.0.0.

Table 4.2.0.0. The payment initialization parameters description-1

Parameter name Value Description/ example

cost the amount that the client must pay 100 (if the amount is transferred with cents, then use
the "dot" separator, eg 100.65)

name Description of the paid product / service.
Displayed on the payment page.

No more than 128 characters. Example: Order No.
212

email customer email field is required for
recurring payments, for other payment
options, the need for input is regulated in
the service settings

test@test.com

phone_number Numerical field, required
The order number in the partner's system
must be unique. Orders with the same
order_id cannot be paid twice. If there is
no need to define each order, then the
order_id value should be set to 0. The
maximum length is 64 characters.
For recurring payments, length> = 6
characters

00001
The use of the Latin alphabet is allowed. Cyrillic is not
supported (an error will be received when creating a
transaction).

comment Payment comment. You can transfer any
of your information through it. The
information passed in this parameter is
not displayed on the payment page and
can be used for the internal needs of the
store.

Text field, no more than 512 characters

SM 3000: IAP 34

THE MERCHANT
SERVER

SM3000
INTERNET-ACQUIRING

PLATFORM
request

Merchant manual Chapter 4. Application programming interfaces

* Forced signature verification is activated by the Payment operator administrator in the store service
settings.

For recurrent operations, additional fields must be passed, see the description of recurrent
payments in the Section 6.9. of the Manual.

invoice_data Data in json format for a fiscal receipt (is
used in Russian region only)

htmlspecialchars JSON

custom_fields Optional parameter. Designed to transfer
additional information to various payment
channels

urlencoded словарь JSON

check* Version 2.0 signature is the electronic
signature of the request. See Section 5.3.
for the further information

It is obligatory to pass the parameter version = '2.0'
and service_id.
The key parameter is not required in this case.

service_id Required field, Service ID 121233

version Line. Required to install a version of the
API other than 1.0. If not specified, API
version 1.0 is used.

2.0.

Parameter name Value Description/ example

SM 3000: IAP 35

Merchant manual Chapter 4. Application programming interfaces

4.3. Getting additional parameters about a transaction (webhook notifications)

If you’d like to use recurring payments or to provide a service to the user in part (for example, to charge the
internal account depending on the funds that the user has deposited), you could be interested in the
opportunity to receive additional payment parameters. To do this, you need to specify the script URL when
you create a service to get additional payment parameters. If the URL is specified and the checkbox is not
enabled, the script will not be called.

For the Service creation see Section 2.3. of the Manual.

An example of parameters passed by an additional handler is provided in the Table 4.3.0.0.

Table 4.3.0.0. The parameters of the additional handler example

No Parameter name Description/ example

1 tid Transaction ID

2 name The name of the product or service. Displayed on the payment page.

3 comment Payment comment passed during the payment initialization process. See Sec.4.2. for the
further information

4 partner_ID Partner ID, that is, your ID

5 service_ID Service ID

6 order_ID Order ID

7 type Type of the payment

8 currency Currency type

9 cost The total amount of the order transferred when the payment transaction was initiated

10 income_total The total amount paid by the buyer may differ from income and system_income only if
paid in installments or when the commission is transferred to the payer

11 income The amount received from the payment instrument under this payment transaction

12 partner_income The amount, the store's income from this payment transaction

13 system_income The amount paid by the buyer for this payment transaction

14 command Current action:
• command = process - called for any (including partial) payment for the service
• command = cancel - a refusal from the payment channel was received, explanation of

the reason in the resultStr field
• command = success - called when the service is fully paid
• command = recurrent_cancel - called if the cardholder canceled recurrent payments.
• command = recurrent_expire - called when the recurrent expired.
• command = refund - called as a result of a payment cancellation operation. In the field

result = ok or fail. And resultStr contains the reason for the refusal.
• command = authorize_payment - called when using double authorization for payment
• command = funds_blocked - called when using two stage payment (BLOCK +

CHARGE). Description in the section “Two-step payments (pre-authorization)”.
IMPORTANT: in case of full payment for the service, both success and process will come.

15 result Only for command = refund, ‘ok’ or ‘fail’ values

16 resultSTR Notification text

SM 3000: IAP 36

Merchant manual Chapter 4. Application programming interfaces

All parameters are involved in the formation of the check signature. The signature is formed as md5 from all
parameters concatenated into a string without spaces + the service secret key added at the end.

Example:

$param['check'] == md5($param['tid'].$param['name'].$param['comment'].
$param['partner_id'].$param['service_id'].$param['order_id'].
$param['type'].$param['cost'].$param['income_total'].$param['income'].
$param['partner_income'].$param['system_income'].$param['command'].
$param['phone_number'].$param['email'].$param['result'].
$param['resultStr'].$param['date_created'].$param['version'].
$secretKey);

For recurrent payments, two fields are added (card and recurrent_order_id) and the signature
line is formed as follows:

tid + name + comment + partner_id + service_id + order_id + type + cost + income_total +
income + partner_income + system_income + command + phone_number + email + resultStr +
date_created + version + card + recurrent_order_id + secret_key

It should be noted that in case of full payment for the service, two calls will be generated - success and
process.

• resultStr - notification text. It is standard for command = process and success parameter values.
For command = cancel, the output is what the payment gateway will answer.

• version - version of the notification protocol. In the future, we plan to support the versioning of the
protocol.

• date_created - the date the transaction was created

17 version Version of the notification protocol. (Currently: 2.0).
The default version is 1.0. Switching to other versions is performed on the bank side upon
request from the client

18 phone_number Optionally phone number

19 email Optionally email

20 date_created date and time of transaction creation, format 'YYYY-MM-DD HH24.MI.SS'

21 recurrent_order_id Order ID (order_id), which was sent when the recurrent payment was called for the first
time (only for recurring operations)

22 card Masked card number, always filled in when there is a card field

23 cardholder Cardholder's name if present in the transaction

24 card_binding_id a unique token for the stored card data. See Sec. 6.10 for the further information

25 test Value 1 (only for test payments). See Sec.6.2. for the further information

26 paid_date date and time of payment for the transaction (confirmation of payment by the payment
channel), format 'YYYY-MM-DD HH24.MI.SS'

27 check Algorithm can be presented by the request to ALFEBA’s team

28 refund_ext_id additional refund id when making multiple refunds within a transaction. See Sec. 6.6. for
the further information

No Parameter name Description/ example

SM 3000: IAP 37

!

Merchant manual Chapter 4. Application programming interfaces

4.4. Transfer of extended transaction data (custom_fields, airline tickets)

“Airticket” - information about the ticket for which payment is made in case of payment by cards (long entry).

Example:

1 {
2 "airticket": {
3 "passengers": [
4 {
5 "ticket_number": "3905241025377",
6 "first_name": "KONSTANTIN",
7 "last_name": "IVANOV"
8 }
9],
10 "restricted": "0",
11 "triplegs": [
12 {
13 "date": "2014-06-06",
14 "to": "RHO",
15 "carrier": "XY",
16 "from": "ATH"
17 }
18]
19 }
20 }

Airticket parameters are provided in the Table 4.4.0.0.

Table 4.3.0.0. The air ticket parameters description

N
o

Parameter
name Format Description

1 passengers passenger list (from 1 to 4)

ticket_number Ticket number (up to 13 digits, including a check
digit)

first_name Passenger name (up to 20 latin characters)

last_name Last name of the passenger (up to 20 Latin
characters)

passport passport(optional) Passport series and number

country (optional) Nationality of the passenger (ISO 3166-1
alpha-3 code)

2 restricted Restrictions on ticket refund (0 - no restrictions, 1 -
not refundable)

3 system (optional) Code of the system used for booking and
purchasing the ticket (up to 4 Latin characters)

4 agency_code (optional) Agency code (up to 8 Latin characters /
numbers)

5 agency_name (optional) Agency name (up to 25 Latin characters /
numbers)

SM 3000: IAP 38

Merchant manual Chapter 4. Application programming interfaces

6 triplegs route. It can contain from 1 to 4 stages. Data format
of each stage

date Departure date (YYYY-MM-DD format)

carrier Carrier (two-character IATA code)

from Airport code of departure (three-character IATA
code)

to Arrival airport code (three-character IATA code)

class (optional) Service class (1 character)

stopover (optional) flag of the ability to make a stop when
transferring (O - stop is allowed, X - stop is not
allowed)

fare_code (optional) Fare code (up to 6 characters)

flight_number (optional) Flight number (3 to 5 characters)

N
o

Parameter
name Format Description

SM 3000: IAP 39

Merchant manual Chapter 4. Application programming interfaces

This page doesn’t contain any information

SM 3000: IAP 40

Chapter 5. Request authentication

This chapter contains the next sections:

Section Description Page

5.1. General information 43

5.2. Keys for the request authentication 44

5.3. Signature creation algorithm 46

5.4. System IP addresses 53

C
H

A
PT

ER
 5

. R
eq

ue
st

 a
ut

he
nt

ic
at

io
n

Merchant manual Chapter 5. Request authentication

This page doesn’t contain any information

SM 3000: IAP 42

Merchant manual Chapter 5. Request authentication

5.1. General information

In this chapter we describe how do you can build your own universal solution without resorting to using
modules for popular CMS, using the API

To avoid fraudulent actions by third parties, you must look through the check parameter (digital signature)
during the request processing from the RFI system. The digital signature provides a high level of security, as
it is generated using a secret_key known only to your service and the processing system. In case of
compromise, secret_key must be reported to Payment operator by email.

If the store does not use a script to process requests from the system, then be sure to specify Email when
creating the service, since you must manually check the cost of the goods and the amount paid by the client
(it will be indicated in the email).

Parameters to be signed must be in urldecoded format.

In addition to the parameters involved in the digital signature, the phone_number and email parameters,
the user's phone number and email are sent to the handler and the successful purchase page (if you made it
mandatory to enter these data in the service settings)

If the payment amount is changed and the script on the side of the store does not verify the authenticity of
the request, then fraud on the part of unscrupulous users is possible.

To avoid fraudulent actions on the part of third parties, when processing a notification, you must
check:

• the correspondence of the parameter values and check (digital signature) transmitted in the
notification

• correspondence of the system_income value passed in the notification and the cost of the
payment specified during the initialization of the payment.

• optionally, you can check other parameters passed when initiating payment, for example,
order_id, comment.

‘

These checks ensure that the cost of the product / service is reconciled with the amount actually paid by the
client. If these parameters do not match, the buyer must be denied the provision of the product / service and
you should report such cases to Payment operator by email.

SM 3000: IAP 43

!

Merchant manual Chapter 5. Request authentication

5.2. Keys for the request authentication

The keys to authenticate the request can be obtained by clicking on "CMS Settings" when creating the
payment button.

Payment buttons are generated along the path TOOLS → SERVICES → Create button.

The "secret key" corresponds to the second version of the API, that Payment operator uses.

Or using CMS settings activating from the Create button page:

SM 3000: IAP 44

Merchant manual Chapter 5. Request authentication

The page will be opened:

SM 3000: IAP 45

1 StringToSign = HTTPVerb + "\ n" +

2 ValueOfHostHeaderInLowercase + "\ n" +

3 HTTPRequestURI + "\ n" +

4 CanonicalizedQueryString

5

6 # HTTPVerb is a POST, GET, PUT or DELETE method.

7 # ValueOfHostHeaderInLowercase - host parameter from the HTTP
request header.

8 # HTTPRequestURI - URI component, absolute path to, but not
including GET parameters.

9 # A '/' is expected for an empty path.

10 # CanonicalizedQueryString is the string from the previous step.

Merchant manual Chapter 5. Request authentication

5.3. Signature creation algorithm

Create a normalized query string for use in the following stages:

A. Sort parameters by name in utf8, comparing byte-wise. Parameters are taken from the GET URI or from
the body of the POST request (when ContentType is application / xwwwformurlencoded)

B. URL-encode parameter names and values according to the following rules:

C. Do not encode non-reserved characters defined in RFC 3986. These characters are Az, az, 09, minus (-),
underscore (_), period (.), And tilde (~).

D. All other characters must be encoded as% XY, where X and Y are hexadecimal characters 0 through 9
and A through F (all caps). Extended utf8 characters are encoded as% XY% ZA ...

E. Space is encoded as% 20 (and not as +, as is usually done in URLs)

F. The coded parameter names are separated from the coded values by an equal sign (=, ASCII code 61),
even if the parameter is empty.

G. Name-value pairs are separated by an ampersand (&, ASCII code 38).

H. Create a signature string according to the following pseudo - grammar (where "\ n" is ASCII line feed
characters):

I. Calculate RFC 2104 compliant HMAC from the newly generated StringToSign, using the peer's secret
key as the algorithm key, and SHA256 as the hashing method.

J. Convert the received signature to base64.

K. Use the result as the value of the check parameter.

Example of the creation using PHP:

1 function http_build_query_rfc_3986($queryData, $argSeparator='&')

2 {

3 $r = '';

SM 3000: IAP 46

Merchant manual Chapter 5. Request authentication

4 $queryData = (array) $queryData;

5 if(!empty($queryData))

6 {

7 foreach($queryData as $k=>$queryVar)

8 {

9 $r .= $argSeparator.$k.'='.rawurlencode($queryVar);

10 }

11 }

12 return trim($r,$argSeparator);

13 }

14

15 function sign($method, $url, $params, $secretKey, $skipPort=False)

16 {

17 ksort($params, SORT_LOCALE_STRING);

18

19 $urlParsed = parse_url($url);

20 $path = $urlParsed['path'];

21 $host = isset($urlParsed['host'])? $urlParsed['host']: "";

22 if (isset($urlParsed['port']) && $urlParsed['port'] != 80) {

23 if (!$skipPort) {

24 $host .= ":{$urlParsed['port']}";

25 }

26 }

27

28 $method = strtoupper($method) == 'POST'? 'POST': 'GET';

29

30 $data = implode("\n",

31 array(

32 $method,

33 $host,

34 $path,

35 http_build_query_rfc_3986($params)

SM 3000: IAP 47

Merchant manual Chapter 5. Request authentication

36)

37);

38

39 $signature = base64_encode(

40 hash_hmac("sha256",

41 "{$data}",

42 "{$secretKey}",

43 TRUE

44)

45);

46

47 return $signature;

48 }

49

50 // An example of a call, where $ req is an array with transaction parameters:

51 sign("GET", "https://partner.rficb.ru/alba/input/", $req, 'secret');

SM 3000: IAP 48

Merchant manual Chapter 5. Request authentication

Example of the creation using python:

1 from urllib.parse import urlparse,quote

2 import hashlib

3 import urllib

4 import base64

5 import hmac

6

7

8 def sign(method, url, params, secret_key, exclude=['check', 'mac']):

9 """

10 Типовой метод для подписи HTTP запросов

11 """

12 url_parsed = urlparse(url)

13 keys = [param for param in params if param not in exclude]

14 keys.sort()

15

16 result = []

17 for key in keys:

18 value = quote(

19 (params.get(key) or '').encode('utf-8'),

20 safe='~'

21)

22 result.append('{}={}'.format(key, value))

23

24 data = "\n".join([

25 method,

26 url_parsed.hostname,

27 url_parsed.path,

28 "&".join(result)

29])

SM 3000: IAP 49

Merchant manual Chapter 5. Request authentication

30 secrkey = secret_key.encode('utf-8')

31 mesg=data.encode('utf-8')

32 print(secrkey,mesg)

33 digest = hmac.new(

34 secrkey,

35 mesg,

36 hashlib.sha256

37).digest()

38 signature = base64.b64encode(digest)

39 print(signature.decode('utf-8'))

40 return signature

41

42 # Example of the call

43 sign("GET", "https://partner.rficb.ru/alba/input/", {'login': 'newlogin~_-.'},
'165165165sd');

SM 3000: IAP 50

Merchant manual Chapter 5. Request authentication

Example of the creation using java:

1 package ru.rficb.alba;

2

3 import java.io.UnsupportedEncodingException;

4 import java.net.URLEncoder;

5 import java.nio.charset.Charset;

6 import java.security.InvalidKeyException;

7 import java.security.NoSuchAlgorithmException;

8 import java.util.ArrayList;

9 import java.util.Collections;

10 import java.util.List;

11 import java.util.Map;

12 import java.net.URI;

13 import java.net.URISyntaxException;

14 import javax.crypto.Mac;

15 import javax.crypto.spec.SecretKeySpec;

16 import javax.xml.bind.DatatypeConverter;

17

18 /**

19 * Signature of the version 2.0+

20 */

21 public class AlbaSigner {

22

23 public static String sign(String method, String url, Map<String, String>
params, String secretKey)

24 throws URISyntaxException, UnsupportedEncodingException,
NoSuchAlgorithmException, InvalidKeyException {

25

26 URI uri = new URI(url);

27

28 List keys = new ArrayList<>(params.keySet());

SM 3000: IAP 51

Merchant manual Chapter 5. Request authentication

29 Collections.sort(keys);

30

31 StringBuilder sb = new StringBuilder();

32 for (String key: keys) {

33 if (sb.length() > 0) {

34 sb.append("&");

35 }

36

37 sb.append(String.format("%s=%s", key,
URLEncoder.encode(params.get(key), "UTF-8")));

38 }

39 String urlParameters = sb.toString();

40 String data = method.toUpperCase() + "\n" +

41 uri.getHost() + "\n" +

42 uri.getPath() + "\n" +

43 urlParameters;

44

45 Mac hmacInstance = Mac.getInstance("HmacSHA256");

46 Charset charSet = Charset.forName("UTF-8");

47 SecretKeySpec keySpec = new
javax.crypto.spec.SecretKeySpec(charSet.encode(secretKey).array(),
"HmacSHA256");

48 hmacInstance.init(keySpec);

49

50 return
DatatypeConverter.printBase64Binary(hmacInstance.doFinal(data.getBytes("UTF-8"))
);

51 }

52 }

SM 3000: IAP 52

Merchant manual Chapter 5. Request authentication

5.4. System IP addresses

From the IP addresses specified in the Table 5.4.0.0., requests will be sent to your handler.

Table 5.4.0.0. IP addresses details for the requests

IP address

SM 3000: IAP 53

Merchant manual Chapter 5. Request authentication

This page doesn’t contain any information

SM 3000: IAP 54

Chapter 6. Additional options

This chapter contains the next sections:

Section Description Page

6.1. General information 57

6.2. Background initiation of payment 57

6.3. Requesting information about a transaction 66

6.4. Pre-authorization (additional request about the possibility of making a
payment)

69

6.5. Two-stage payments (holding funds on a card) 70

6.6. Refund of payments (refund) 71

6.7. API for sending and receiving payment / refund checks 77

6.8. Payment cancellation (reversal) 78

6.9. Description of the recurring payment scheme (RP) 79

6.10. Saving data of the payer's card 83

6.11. Using tokens (card tokens) with libraries for mobile applications 84

C
H

A
PT

ER
 6

. A
dd

iti
on

al
 o

pt
io

ns

Merchant manual Chapter 6. Additional options

This page doesn’t contain any information

SM 3000: IAP 56

Merchant manual Chapter 6. Additional options

6.1. General information

In this chapter we describe options for deeper integration with the Bank's services. Most of the features are
included in the SDK (php, python, java).

6.2. Background initiation of payment

The difference from the usual scheme of work is that the payment is initiated by calls to API methods without
displaying additional WEB pages. For this, an additional background parameter is passed with the value “1”.
At the moment, according to the described scheme, it is possible to pay with card tokens, through QIWI and
mobile payment for Beeline, MTS, Megafon and TELE2 operators for example, in the Russian Federation.

6.2.1. Getting a list of payment methods available for the service

To get a list of available methods that can be initiated in the background, you need to send a GET request to:
https://partner.gps.com/alba/pay_types with the following parameters:

• service_id - the id of the service by which you need to get a list of available payment methods

• version - "2.0"

• check - Electronic signature of the request (See Section 5.3. for the further information).

The service response comes in the form of a JSON string.

• Error response: {‘status’: ‘error’, ‘code’ = ’auth’, ‘message’: ‘Invalid signature’}

• Positive answer: {‘status’: ‘success’, ‘types’: [‘mc’, ‘qiwi’, ‘mtsmoney’, ‘mtsmoney_test ']}

where types are payment methods available for this service.

SM 3000: IAP 57

https://partner.gps.com/alba/pay_types

Merchant manual Chapter 6. Additional options

Example of the creation using php:

Example of the creation using python:

1 $service = new AlbaService(SERVICE_ID, 'SERVICE_SECRET');

2

3 try {

4 $payTypes = $service->payTypes();

5 // $payTypes - array of accepted payment methods

6 } catch (AlbaException $e) {

7 echo $e->getMessage();

8 }

1 from alba_client import AlbaService, AlbaException

2

3 service = AlbaService(SERVICE_ID, 'SERVICE_SECRET')

4 try:

5 pay_types = service.pay_types()

6 # pay_types - list of accepted payment methods

7 except AlbaException, e:

8 print("An error has occurred: {}".format(e))

SM 3000: IAP 58

Merchant manual Chapter 6. Additional options

Example of the creation using Java:

6.2.2. init_payment

Payment is initiated by the method of sending the form from the button code (see Section 4.2.) plus the
background = 1 parameter and parameters for authentication. POST request must be sent to: https://
partner.gps.com/alba/input/

• cost - the cost of the product / service

• name - payment name

• email - the client's email (for mobile commerce, this parameter is optional)

• order_id - unique order number or 0

• phone_number - customer's phone number

• background - always 1

• type - payment method ('mc', 'qiwi', 'mtsmoney', 'mtsmoney_test'), must be available.

• invoice_data - Data in json format for a fiscal receipt (not used in the current version)

• test - an optional parameter for testing payment from a phone or wallet account; to test payment by cards,
use test sets of cards (see Sec. 3.8.). Can be ok or operator_cancel. If the parameter is present, no real
calls to providers are made - a successful payment (for ok) or a refusal of the provider (for
operator_cancel) is immediately generated. The created transaction is test and no payments are made on
it.

One of the following parameter sets must be passed for authentication:

• key - a unique key for the service, generated together with the button,

or

• service_id - service id

• version - "2.0"

• check - Electronic signature of the request. (See Sec 5.3.)

1 AlbaService service = new AlbaService (SERVICE_ID, "SERVICE_SECRET");

2

3 Set <String> paymentTypes = service.paymentTypes ();

SM 3000: IAP 59

Merchant manual Chapter 6. Additional options

6.2.3. init_result

Initialization result means creation of a payment transaction. Payment for the transaction is
delayed in time, the result of payment must be received by processing notifications (abbreviated
notification, extended notification) from the Payment operator system or form a request to obtain
the status of the transaction.

For operations of repeated write-off by recurrent, the operation is performed synchronously. A
positive answer guarantees a successful operation, while it is recommended in any case to
process notifications sent from the Payment operator system.

A positive response

• {‘Status’: ‘success’, ‘tid’: <TID>, 'help': "<text that describes the payment procedure via mobile commerce
or terminal>"}

• {‘Status’: ‘success’, ‘tid’: <TID>}

Error response

• {‘Status’: ‘error’, ‘code’: ‘<type | auth | data | common | unique>’, ‘msg’: ”}

• Where message is a textual description of the error, and code is a type:

• type - this type of payment is not available

• auth - invalid signature

• data - data is incorrectly formed (phone format, email)

• common - other errors

• unique - a transaction with this order_id already exists

Positive answer for mc gateway:

1 {'status': 'success', 'tid': 12332, 'help': 'text that describes the

payment procedure via mobile commerce'}

Positive answer for spg gateway (recurring card payment):

1 {"status": "success", "tid": "36619984"}

An example of a negative answer for spg gateway (recurring card payment):

1 {"status": "error", "msg": "Recurrent for service XXXXX / order

YYYYYY has status 'canceled'", "code": "common"}

SM 3000: IAP 60

!

Merchant manual Chapter 6. Additional options

Example of the creation using php:

1 $ service = new AlbaService (SERVICE_ID, 'SERVICE_SECRET');

2

3 try {

4 $ result = $ service-> initPayment (

5 'mc', // payment method

6 10, // amount

7 'Test', // payment name

8 'test@example.com', // client email

9 '71111111111' // customer phone number

10 False, // order_id (optional)

11 'partner', // commission (optional)

12);

13 if ("success" === $ result-> status) {

14 echo "Successful initiation of transaction id =". $ result-
> tid;

15 } else {

16 echo $ result-> message;

17 }

18 } catch (AlbaException $ e) {

19 echo $ e-> getMessage ();

20 }

SM 3000: IAP 61

Merchant manual Chapter 6. Additional options

Example of the creation using python:

1 from alba_client import AlbaService, AlbaException

2

3 service = AlbaService (SERVICE_ID, 'SERVICE_SECRET')

4 try:

5 result = service.init_payment (

6 pay_type = 'mc',

7 cost = 10,

8 name = 'Test',

9 email='test@example.com ',

10 phone = '71111111111',

11 commission = 'partner'

12)

13 if result ['status'] == "success":

14 print ("Successful initiation of transaction {}". format
(result ['tid']))

15 else:

16 print (result ['message'])

17 except AlbaException, e:

18 print ("An error occured: {}". format (e))

19

20

SM 3000: IAP 62

Merchant manual Chapter 6. Additional options

Example of the creation using Java:

6.2.4. tr_status

After the transaction is created, the partner has the opportunity to receive information on the transaction by
sending a POST request to https://partner.gps.com/alba/details The request must be sent (protocol version
2.0):

• version - "2.0"

• tid - transaction id

• check - Electronic signature of the request.

Alternatively, you can send a GET request to the same address with parameters (DEPRECATED):

• api_key - authorization key (https://home.gps.com/apikeys/)

• tid - transaction id

1 AlbaService service = new AlbaService ("SERVICE_KEY");

2

3 InitPaymentRequest request = new InitPaymentRequest ()

4 .builder ()

5 .setPaymentType ("mc")

6 .setCost (new BigDecimal (10.5))

7 .setName ("Test")

8 .setEmail ("main@example.com")

9 .setPhone ("71111111111")

10 .build ();

11

12 InitPaymentResponse response = service.initPayment (request)

SM 3000: IAP 63

Merchant manual Chapter 6. Additional options

Error response:

1 {'status': 'error', 'code': '<auth | common | method>', 'msg': ''}

Where msg is a textual description of the error and code is the type:

• auth - invalid signature

• common - other errors

A positive response:

1 {"status": "success", "order_id": "<order_id>", "partner_income":

<store income>, "help": "<text that describes the payment procedure

via mobile commerce or terminal>", "service ":" <service name> ","

transaction_status ": '<open | error | payed | success>'," tid ":"

<TID> "," service_id ":" <service id> "," income_total ": <transaction

amount>}

Example of the creation using php:

1 $ service = new AlbaService (SERVICE_ID, SERVICE_SECRET);

2

3 try {

4 $ details = $ service-> transactionDetails (TRANSACTION_ID);

5 echo 'Transaction status:'. $ details-> transaction_status;

6 } catch (AlbaException $ e) {

7 echo $ e-> getMessage ();

8 }

9

SM 3000: IAP 64

Merchant manual Chapter 6. Additional options

Example of the creation using python:

Example of the creation using Java:

1 from alba_client import AlbaService, AlbaException

2

3 service = AlbaService (SERVICE_ID, 'SERVICE_SECRET')

4 try:

5 details = service.transaction_details (TRANSACTION_ID)

6 print ('Transaction status: {}'. format (details
['transaction_status']))

7 except AlbaException, e:

8 print ("An error occured: {}". format (e))

9

1 // response - response received when the payment was initiated

2 TransactionDetails details =
alba.transactionDetails(response.getSessionKey());

SM 3000: IAP 65

Merchant manual Chapter 6. Additional options

6.3. Requesting information about a transaction

Transaction information

After the transaction is created, the partner has the opportunity to receive information on the transaction by
sending a POST request to https://partner.gps.com/alba/details The request must be sent (protocol version
2.0):

Request information on order_id and service_id:

• version - "2.0"

• order_id - order id

• service_id - the service ID can be found in the section of your personal account Tools → Services

• check - Electronic signature of the request.

Request information by transaction_id:

• version - "2.0"

• tid - transaction id

• check - Electronic signature of the request.

Error: {"status": "error", "msg": "Error description", "code": "<auth | common>"}

Transaction not found: {"status": "pending", "tid": "None", "msg": ""}

Transaction found: {"status": "success", "order_id": "123456", "partner_income": 193.45, "help": false,
"service": "Service name", "transaction_status": "<open | payed | success | error> "," tid ":" 12312312 ","
service_id ":" 12345 "," income_total ": 199.0}

• partner_income - the amount in rubles, the store's income from this payment transaction

• income_total - the amount in rubles paid by the buyer for this payment transaction

transaction statuses:

• open - transaction found, in the process of payment

• error - erroneous transaction, final status

• payed or success - transaction is paid, final status

• pending - the transaction was not found, not created, or is being processed. It is necessary to re-request.

SM 3000: IAP 66

Merchant manual Chapter 6. Additional options

Example 1:

Request

Headers

Content-Type:application/x-www-form-urlencoded

URL

https://partner.rgps.com/alba/details

Body

version:2.0

service_id:67279

order_id:12456

check:7ALsKM72UNEwmnlLBd8IAYUDZV67NnFdUzSIo61KFmo=

Response

{"status": "success", "order_id": "12456", "partner_income": 161.5,

"help": false, "service":

"\u0422\u043e\u043a\u0435\u043d \u0438 direct_api",

"transaction_status": "payed", "tid": "67740380", "service_id":

"67279", "income_total": 190.0}

SM 3000: IAP 67

Merchant manual Chapter 6. Additional options

Example 2:

Request

Headers

Content-Type:application/x-www-form-urlencoded

URL

https://partner.gps.com/alba/details

Body

version:2.0

tid:377333230

check:954h3gXzciI8Jnx7ux6dELS6cnurgr6Jtz7f35V9vkM=

Response

{"status": "success", "order_id": "None", "partner_income": 0.85,

"help": false, "service":

"\u0442\u0435\u0441\u0442\u043e\u0432\u044b\u0439

\u0441\u0435\u0440\u0432\u0438\u0441", "transaction_status": "payed",

"tid": "377333230", "service_id": "82920", "income_total": 1.0}

SM 3000: IAP 68

Merchant manual Chapter 6. Additional options

6.4. Pre-authorization (additional request about the possibility of making a
payment)

Authorize payments

This procedure will allow you to receive an additional request immediately before sending the client to our
payment gateway using cards, or to the gateway of other payment systems (e-wallets, mobile payment). To
this request, you answer whether you are ready to accept this payment. To use this procedure, specify
“Receive additional payment parameters” in the service settings, specify the address of your additional
parameters handler, specify “Confirmation of goods reservation” (if you select “Once”, then the request
will come only once)

Then, when paying, you will receive command = authorize_payment

The response is received in the format "status: STATUS \ n \ nMESSAGE".

• STATUS can take the value "authorized" - payment is allowed. Other values - prohibition of payment;

• MESSAGE - a message that will be shown to the client if the payment is refused;

UTF-8 encoding, request timeout - 10 seconds.

An empty or incorrectly formed response is equated to a payment rejection response.

SM 3000: IAP 69

Merchant manual Chapter 6. Additional options

6.5. Two-stage payments (holding funds on a card)

In some cases, it is required to block funds on the payer's card until the transaction is confirmed by the
merchant. In such cases, you need to use the two-step payment functionality.

This functionality is activated for the selected service by separate agreement. According to the
rules of payment systems, the transaction must be issued for payment within 7 days, so funds
can be in the "For approval" status for a maximum of 7 days - after this period the funds
automatically become available to the payer.

During the payment, the funds are blocked on the client's card, and the payment is debited or canceled by
the merchant employee.

Upon blocking funds, the system initiates notification command = funds_blocked, described in the
section 4.4. Payments that require confirmation are reflected in the Merchant profile.

During processing, the merchant manager can choose the following actions:

• cancel blocking

• confirm cancellation of full

• confirm writing off a smaller amount

6.5.1. Reserved Funds Management API

To create an application via the API, you must perform a POST request to the address https://
partner.gps.com/alba/process_funds_blocked/

The request must contain (signature version 2.0):

• version - "2.0"

• check - Electronic signature of the request.

• tid - transaction id

• action - type of operation: charge - debiting funds, unblock - unblocking funds;

• amount - the amount to be debited;

Error response: {‘status’: ‘error’, ‘msg’: ”}

Positive answer: {‘status’: ‘success’}

If, with action = charge, you specify an incomplete transaction amount, only the specified amount will be
debited. And the rest will be unlocked.

SM 3000: IAP 70

!

Merchant manual Chapter 6. Additional options

6.6. Refund of payments (refund)

The system assumes the possibility of providing a refund for successful transactions. Refunds can be made
from the Merchant profile or via the API.

The functionality is activated for the selected service and payment channel by separate agreement. Refunds
may not be available for certain channels.

If the payment channel does not support returns, the message “The payment channel does not support
returns” will be displayed

For Visa / MasterCard refunds:

• spent day-to-day passes without additional commission and with minimal delay. Funds are credited to the
payer's account within 2 hours.

• spent the next day are subject to a commission and the term for crediting funds can be up to 7 working
days, depending on the issuer.

The return operation is irreversible! If you made a mistake with the refund amount or transaction
id, contact the technical support of the Payment operator.

SM 3000: IAP 71

!

Merchant manual Chapter 6. Additional options

6.6.1. Refund through the Merchant profile

Go to Merchant profile → Reports → Statistics. Find the required transaction and click on "Request
Refund":

There will be an automatic redirection to the returns management page, where you must specify the amount,
reason and id of the return (optional):

If the return id is not specified, the system will assign the value automatically.

SM 3000: IAP 72

Merchant manual Chapter 6. Additional options

Multiple refund

For Visa / MasterCard it is possible to make several refunds within one transaction. This is possible if one
refund was made for an amount less than the original one.

Initialization takes place from the page for managing returns Merchant profile → Tools → Services →
Refunds (to the right of the main window).

Fill in the fields:

• ID of the Transaction within which refunds will be initiated.

• Refund amount minus previous / previous refunds.

• Your return ID. If there is only one return, it is not necessary to fill out.

After entering the data and confirming, an informational message and the previously created return will
appear:

Click on the checkbox and click Create.

SM 3000: IAP 73

Merchant manual Chapter 6. Additional options

6.6.2. Statuses

The refund operation can have several statuses:

• In progress - the operation has been created in the system and is in progress;

• Queued - the operation has been created in the system and is in the queue for execution;

• Canceled - the operation is not completed, an error occurred, contact technical support;

• Completed - the operation was completed, the refund was made. The refund check is available in the
statistics of transactions by click → transaction ID → show check.

Refunds may exceed the total amount of transactions per day. In this case, the refund is in the
queue until the required amount is accumulated (before it is credited to the current account).
After each transfer to the current account, the amount will be accumulated again. The Payment
operator/ Bank cannot collect funds for a refund from the current account, therefore, only the
amount that has accumulated during the day is involved in refunds.

6.6.3. Refund using API

To create an application via the API, you must perform a POST request to the address https://
partner.gps.com/alba/refund/

The request must pass (Content-Type: “application / x-www-form-urlencoded”):

• version - "2.0"

• tid - transaction id

• amount - an optional parameter, the amount is specified in the xxx.xx format. If the value is not specified,
the entire amount will be returned

• reason - optional parameter - reason for return

• refund_ext_id - refund id

• check - Electronic signature of the request.

JSON is returned in response with the result of processing the request:

• Success: {‘status’: ‘success’, ‘payback_id’:}

• Failure: {‘status’: ‘error’, ‘message’: ”}

The result determines the creation / initialization of a refund in the system, but not the refund process itself.
Information on the progress of the operation should be viewed on the Refunds management page or in the
statistics.

SM 3000: IAP 74

!

Merchant manual Chapter 6. Additional options

Example of the creation using php:

Example of the creation using python:

1 $ service = new AlbaService (SERVICE_ID, 'SERVICE_SECRET');

2

3 try {

4 $ result = $ service-> refund (TRANSACTION_ID);

5 echo "Refunds are queued, payback_id:". $ result-> payback_id;

6 } catch (AlbaException $ e) {

7 echo "An error occured:". $ e-> getMessage ();

8 }

9

1 from alba_client import AlbaService, AlbaException

2

3 service = AlbaService (SERVICE_ID, 'SERVICE_SECRET')

4 try:

5 result = service.refund (TRANSACTION_ID)

6 print ("Return queued, payback_id: {}". format (result
['payback_id']))

7 except AlbaException, e:

8 print ("An error occured: {}". format (e))

9

SM 3000: IAP 75

Merchant manual Chapter 6. Additional options

Example of the creation using Java:

1 AlbaService = new AlbaService(SERVICE_ID, "SERVICE_SECRET");

2

3 RefundResponse refundResponse = service.refund(

4 RefundRequest.builder(response.getTransactionId())

5 .setAmount(new BigDecimal("REFUND_AMOUNT"))

6 .setReason("REFUND_REASON")

7 .build()

8);

9

SM 3000: IAP 76

Merchant manual Chapter 6. Additional options

6.7. API for sending and receiving payment / refund checks

API call to send a check to the email specified during payment:

https: //partner.gps.com/alba/send_receipt/? tid = & api_key = ... - for direct

check

https://partner.gps.com/alba/send_receipt/?tid=&api_key=...&receipt_type=payback

- for return

API call to get a link to a receipt:

https: //partner.gps.com/alba/receipt/? tid = & api_key = ...

https://partner.gps.com/alba/receipt/?tid=&api_key=...&receipt_type=payback

SM 3000: IAP 77

Merchant manual Chapter 6. Additional options

6.8. Payment cancellation (reversal)

To cancel a payment, you must complete a POST request to the address https://partner.gps.com/

alba/reversal/<tid>/<payment_type>/

The url must be passed:

• tid - transaction ID

• payment_type - payment type, string. Mtsmoney and mtsmoney_ext are available

In the body of the request or in the parameters of the request, you must pass check - electronic signature.

A response containing an HTTP Status equal to 200 means successful processing of the request.

SM 3000: IAP 78

Merchant manual Chapter 6. Additional options

6.9. Description of the recurring payment scheme (RP)

This option is available only for merchants that have agreed to provide recurring payments when connecting
to the system. When connecting the RP, you need to prepare your system for processing the messages
described in the section 4.4.

6.9.1. Registration of recurring payment

Recurrent payment (RP) consists of two operations:

• payment from RP registrations recurrent_type = first

• RP on demand recurrent_type = next

To register a recurring payment, a regular request is sent to the address https://partner.gps.com/

alba/input/ described in Sections 3.2. and 4.2. plus additional parameters:

Table 6.9.1.0. The additional parameters description for the RP registration

Parameter
name Value Description/ Examples

order_id Order ID, length 6-20
characters.

123456 (minimum 6 characters)

If the order_ID exists:

There is a mechanism for checking the order number (order_id) for uniqueness. It's not a
mistake. The warning you see in such cases is the result of this check.
A link or button is a generator. Each transition through it is an attempt to create a new
transaction with the number that the link is currently transmitting. Transferring the same
order number from the store admin (CMS) leads to the same result.
An example of a link containing an order number:
https://partner.gps.com/alba/input/?
name=Rent_hall&cost=15200&key=Agl%2FskVOgsU6ZizcKvXjIlWhNJPyYri9x0J%2BY9e
x6C0%3D&default_email=&order_id=192032
An example of an algorithm for receiving a warning:
The first click created transaction 3950000001 with order number 192032. Payment
failed, the payer closed the browser.
After a while, the payer clicked on this link again. The bank gateway tried to create
transaction 3950000002 with order number 192032.
Warning. The existence of two different transactions with the same number is impossible!
If you want to avoid this behavior, pass a new order number for each click on the button
from the cart or link. If you continue to receive the warning "There is already an order with
order_id XXXXX. Old number XXXXXXXXX", then your store sends the same message
for every click. You can verify the existence of a transaction with the "old" number
indicated in the warning by checking the "Reports" section.

payment_id the type of payment
to which the payer
should be sent

spa
spg_test for tests

recurrent_type An indication that the
payment is recurring if
the value is:
"First" - payment and
registration of the RP;
"Next" - next RP;
all other parameter
values - the payment
is not an RP.

If value = "first" then fields are required:
email, order_id, recurrent_comment, recurrent_url, recurrent_period
If value = "next" then the required fields are:
background = 1, order_id, recurrent_order_id

SM 3000: IAP 79

Merchant manual Chapter 6. Additional options

After receiving the correct request, the Payment operator initiates the first recurring payment.

Based on the results of the payment, the Payment operator redirects the user to the partner and informs the
payer to the specified e-mail with a link to unsubscribe (deactivate) the RP.

The Payment operator informs the partner through asynchronous notification about the successful activation
of the RP and payment of the first transaction. In addition to the extended notification command = success,
the following fields are transmitted: recurrent_order_id and card with a masked card number. See Sec.4.4.

If the payer refused to save the card in the notifications, the recurrent_order_id parameter will be absent.

recurrent_comm
ent

Text description for
what the registration
of the RP is made

Text field. Transmitted optionally.

recurrent_url Link to a detailed
description of the
rules for providing a
recurring payment

recurrent_period The period after
which the next write-
off occurs

Currently only valid value is: byrequest
Must be passed only if recurrent_type = first

check Version 2.0 signature
- electronic signature
of the request

It is obligatory to pass the parameter version = '2.0' and service_id.
The key parameter is not required in this case.

service_id Service ID, required 121233

version Line. Required to
install the API version

2.0

Parameter
name Value Description/ Examples

SM 3000: IAP 80

Merchant manual Chapter 6. Additional options

6.9.2. Making the second and subsequent payments to the RP (synchronous operation)

The partner forms a request to https://partner.gps.com/alba/input/ indicating the main set of
parameters plus:

The payer or the merchant system is also not sent to the card data entry form, but waits for the results of the
payment operation to be received through the event handler. The result of the payment is returned to the
partner as standard. In addition to the standard notification, the following fields are transmitted:
recurrent_order_id and card with a masked card number. See Sec 4.4.

For the description of the result of operations with background = 1 see Sec. 6.2.

Table 6.9.2.0. The additional parameters description for the 2-more RP payments

Parameter
name Value Description/ Examples

payment_type Payment type spa
spg_test for tests

recurrent_type “Next”, a fixed value
for repeated RPs.

“next”

recurrent_order
_id

Reference to the
order_id of the first
RP, it is necessary to
transfer the order_id
specified during the
registration of the first
RP. Length 6-20
characters. Specified
only for
recurrent_type = next

123456 (minimum 6 characters)

background Parameter indicating
that the request is
running in the
background

1

check Version 2.0 signature
- electronic signature
of the request

It is obligatory to pass the parameter version = '2.0' and service_id.
The key parameter is not required in this case.

service_id Service ID, required 121233

version Line. Required to
install the API version

2.0

SM 3000: IAP 81

Merchant manual Chapter 6. Additional options

6.9.3. Cancellation of recurring payment (synchronous operation)

To terminate a recurring payment, you must send a request with the parameters specified below to the URL:
https://partner.gps.com/alba/recurrent_change/

6.9.4. Notification of termination of the recurring payment

If the cardholder cancels the subscription to recurrent payments, a notification command =

recurrent_cancel is generated.

If the card has expired, the card binding is canceled and a notification is generated with the value command

= recurrent_expire.

See the complete list of extended notifications in the Sec 4.4.

Table 6.9.3.0. The additional parameters description for the RP cancellation

Parameter
name Value Description/ Examples

operation The action on the
recurrent must be
“cancel”

order_id order_id passed
during RP registration

service_id Service ID, required 121233

check Version 2.0 signature
- electronic signature
of the request

It is obligatory to pass the parameter version = '2.0' and service_id.
The key parameter is not required in this case.

version Line. Required to
install the API version

2.0

SM 3000: IAP 82

https://partner.rficb.ru/alba/recurrent_change/

Merchant manual Chapter 6. Additional options

6.10. Saving data of the payer's card

This functionality allows you to save the payer's card data (except for CVC / CVV) and automatically pull
them into the card data entry form. The payer will then only need to indicate the CVC / CVV code and pass
3DS authorization to make the payment.

The functionality is connected upon request from the support service.

After enabling this option, the card_binding_id parameter with a unique token corresponding to the card
data will be sent to the additional handler in notifications (see Sec. 4.4.), which is then used, among other
parameters, in the request to initiate a payment to substitute card data corresponding to this token.

The fields for filling / changing the card data become unavailable.

SM 3000: IAP 83

!

Merchant manual Chapter 6. Additional options

6.11. Using tokens (card tokens) with libraries for mobile applications

This functionality is connected upon request to the Payment operator technical integration
service.

Token creation

You need to send a request to the URL:

https://test.gps.com/cardtoken/create - test

https://secure.gps.com/cardtoken/create - production

Token lifespan is 15 minutes. Each generated token can be used no more than once.

POST request with parameters:

• service_id - service ID

• card - Card number. Numbers without spaces.

• exp_month - The month the card expires. 2 digits with zero

• ahead for months 1 to 9 ('01' ... '09').

• exp_year Card expiration year (2 digits 20XX).

• cvc - Card verification code (CVV2 / CVC2) - 3 digits.

• card_holder (optional) up to 30 characters Only in Latin and capital letters.

Response (JSON-encoded)

Successful token creation: {“status”: “success”, “token”: “[Token]”}

Error: {“status”: “error”, “message”: “[General error description]”}

In case of an error, there may still be an additional element “errors” - a dictionary, where the keys are the
names of the fields, and the values are the description of errors in them.

SM 3000: IAP 84

!

Merchant manual Chapter 6. Additional options

Payment using a card (/ alba / input)

1. The card token can be used to initiate both regular and recurring payments;

2. Using a token is allowed only in background mode;

https://partner.gps.com/alba/

input/?...payment_type=spg_test&background=1&card_token=3dddfa33494c6bfdf4d5230f

2286d44bab8538e13ad18d61cb336c73c5b60f94

3. If the payment is not successful, an error will be returned (see the description of responses for background
payments);

4. If the card does not require 3DS authorization and the payment is successful, the alba transaction ID will
be returned (see the description of responses for background payments);

5. If the card requires 3DS authorization, then the response, along with the transaction ID alba, will return a
3ds dictionary with the data required for 3DS authorization

3DS authorization

If there is a dictionary with the name 3ds in the background payment initiation response, the user should be
redirected to the website of the issuing bank to pass 3DS authorization. Part of the data to be sent is in the
3ds dictionary, and the partner must form part of it himself;

1. It should be sent by POST request to the URL specified in the ACSUrl field of the 3ds dictionary;

2. Values for reference:

• PaReq - from the PaReq field of the 3ds dictionary;

• MD - from the MD field of the 3ds dictionary;

• TermUrl - URL of the handler located on the partner site. The user will be returned to it after passing the
3DS authorization on the website of the card issuing bank. This URL must be formed so that information
about the transaction is transmitted in it: it is recommended to transmit service_id, tid and order_id (if the
partner has formed a transaction with it);

3. Handler of 3DS authorization result (TermUrl)

• This handler should call the API / alba / ack3ds / method to check if the 3DS is authorized by the user;

• In GET parameters, it will receive the previously generated information about the transaction (service_id,
tid, order_id);

• In POST parameters, it will receive information from the issuing bank - fields PaRes and MD;
SM 3000: IAP 85

Merchant manual Chapter 6. Additional options

• To check the passage of 3DS authorization, call POST with an API request https://

partner.rficb.ru/alba/ack3ds/, passing there:

• service_id;

• tid or order_id;

• emitent_response - data received from the issuing bank in the form of a JSON-encoded
dictionary;

• Note: Request authorization: signature version 2.0 or via api_key;

• The result of the API method / alba / ack3ds /:

• If unsuccessful, a JSON response will be returned:

• {"status": "error", "message": "ERROR DESCRIPTION"}

• If the check is successful, a JSON response will be returned:

• {"status": "success"}

SM 3000: IAP 86

Chapter 7. Reports

This chapter contains the next sections:

Section Description Page

7.1. General information 89

7.2. Payments report 90

7.3. Transactions report 91

7.4. Configuring notifications about successful transactions 92

7.5. Sending of acts and details by e-mail 93

C
H

A
PT

ER
 7

. R
ep

or
ts

Merchant manual Chapter 7. Reports

This page doesn’t contain any information

SM 3000: IAP 88

Merchant manual Chapter 7. Reports

7.1. General information

To work with reports you should go to the Reports page of the principal bar:

SM 3000: IAP 89

Merchant manual Chapter 7. Reports

7.2. Payments report

To generate a report, go to the Reports → Payments menu.

This report contains information about all payment orders generated for the specified period, broken down by
transaction numbers and income amounts.

Select the period for which you want to receive information and click "Request csv generation". After a while,
the report will be available for download on this page.

SM 3000: IAP 90

Merchant manual Chapter 7. Reports

7.3. Transactions report

To receive a report on the statistics of past payments, go to the Reports → Statistics menu.

This report contains statistics of payments for the specified period without reference to the numbers of
payment orders.

Select the period, transaction status (optional) and the service for which you want to get statistics (optional).
You can also select additional filters, such as by payment method.

After that, click "Show" to display statistics in the LC interface, or "Upload to csv" to upload the selected
report to a csv file.

SM 3000: IAP 91

Merchant manual Chapter 7. Reports

7.4. Configuring notifications about successful transactions

To receive letters after each successful operation, specify the email address to which you want to receive
notifications in the Tools settings in the merchant profile:

SM 3000: IAP 92

Merchant manual Chapter 7. Reports

7.5. Sending of acts and details by e-mail

To set up notifications go to the menu Merchant profile → PROFILE

Check the boxes below:

I agree to receive the newsletter of the Payment operator on my E-mail - if you want to receive the
newsletter from Payment operator about the ongoing work, new functionality, etc.

Send daily statistics - if you want to receive daily statistics on past transactions for the previous day.

Send details on payments to E-mail - if you want to receive a daily report on payments to the current account
with a breakdown by transactions

Enter your email address in the box at the bottom of the page and click "Save".

SM 3000: IAP 93

Merchant manual Chapter 7. Reports

If necessary, check the box «To send information about notification error by E-mail".

If notifications were not delivered to your processor for any transactions, a letter containing the error code
and the full text of the notification will be sent to your email address. You can read more about the handler
and notifications in the Sec. 4.4.

SM 3000: IAP 94

Chapter 8. Attachments

This chapter contains the next sections:

Section Description Page

8.1. Terms and abbreviations 97

8.2. External documents references 99

C
H

A
PT

ER
 8

. A
tta

ch
m

en
ts

Merchant manual Chapter 8. Attachments

This page doesn’t contain any information

SM 3000: IAP 96

Merchant manual Chapter 8. Attachments

3.1. Terms and abbreviations

3
3D-Secure Is an XML-based protocol designed to be an additional security layer

for online credit and debit card transactions.

A
API Application programming interface

Authorization Is an approval from a card issuer, usually through a credit card
processor, that the customer has sufficient funds to cover the cost of
the transaction.

B
BO Back-office, of the SM3000 IAP, where the Operator’s employers work

to maintain the Platform jobs, as Merchants, Transactions, Agents,
Reports and file exchange with a main Processing system.

C
Cardholder A person who owns a card, such as a cardholder of a credit card or

debit card

ChargeBack Is a return of money to a payer. Most commonly the payer is a
consumer. The chargeback reverses a money transfer from the
consumer's credit card. The chargeback is ordered by the bank that
issued the consumer's payment card.

F
FE Front-end, of the SM3000 IAP, where the cards authorizations are

processed in on-line mode

I
IAP Internet acquiring platform. The Platform created as a separate

application for the Payment operators and Payment facilitators.

ID Identification number (f.e. transaction ID or Merchant ID)

Incoming-File The data file, that Platform receives from the Bank’s processor

L
Light API The interface to connect the Merchant’s own platform to the SM3000

IAP

M
MasterCard MasterCard International payment system

SM 3000: IAP 97

Merchant manual Chapter 8. Attachments

Merchant A legal entity carrying out trading activities on the Internet using the
software provided by the system

MPI Merchant Plug-in

O
Operator Payment operator or Payment facilitator, that uses SM3000 IAP

Outgoing-File The data file, that the Platform sends to the Bank’s processor

P
PAN Primary account number, or simply a card number, is the card

identifier found on payment cards, such as credit cards and debit
cards, as well as stored-value cards, gift cards and other similar
cards.

Payment Gateway A hardware-software complex developed and supported by a payment
system that automates the acceptance of payments on the Internet.

Payment System Payment system between users, financial organizations and business
organizations. Allows you to pay, bills and purchases, transfer money.

R
Refund A process in which a customer returns a product to the original retailer

in exchange for money previously paid

Reversal The operation of crediting funds to the payer's account as
compensation for the cancellation of the provision of the service or the
poorly rendered service.

S
Service Merchant’s service entry, registered for each MCC. It has its own

parameters, fees etc.

SM3000 Sequoia Mosaic 3000. The processing platform of the cards issuing
and acquiring processing, ATMs, POSs, e-commerce and m-
commerce processing

System A payment system that allows you to transfer money, accept payment
for goods and services through various payment gateways.

T
Transaction Within the framework of this service, a completely completed data

exchange operation with a payment system, including debiting /
crediting funds to an end user account.

V
VISA VISA International payment system

SM 3000: IAP 98

Merchant manual Chapter 8. Attachments

3.2. External documents references

This manual doesn’t have any external link to the other documentation of SM3000 IAP.

SM 3000: IAP 99

Merchant manual Chapter 8. Attachments

SM 3000: IAP 100

ALFEBA

Agraciada 2770 Montevideo 11823 Uruguay

Phone: + 598 2 2083142

E-mail: docs@alfeba.com

www.alfeba.com

http://www.alfeba.com
http://www.alfeba.com

	Chapter 1. About the document
	1.1. Purpose of the document
	1.2. How to use this manual
	1.3. Classification
	1.4. Document sheet
	1.5. Document contacts
	1.6. Document history
	Chapter 2. Getting started
	2.1. General information
	2.2. Access registration and recovery
	2.3. Service creation
	Chapter 3. Payment method setup
	3.1. General information
	3.2. Directing the user to a specific payment method
	3.3. Payment button
	3.4. Payment button with variables
	3.5. Short link (order creation)
	3.6. QR-code
	3.7. Card payments tests
	Chapter 4. Application programming interfaces
	4.1. General information
	4.2. Data sending format by the partner request
	4.3. Getting additional parameters about a transaction (webhook notifications)
	4.4. Transfer of extended transaction data (custom_fields, airline tickets)
	Chapter 5. Request authentication
	5.1. General information
	5.2. Keys for the request authentication
	5.3. Signature creation algorithm
	5.4. System IP addresses
	Chapter 6. Additional options
	6.1. General information
	6.2. Background initiation of payment
	6.3. Requesting information about a transaction
	6.4. Pre-authorization (additional request about the possibility of making a payment)
	6.5. Two-stage payments (holding funds on a card)
	6.6. Refund of payments (refund)
	6.7. API for sending and receiving payment / refund checks
	6.8. Payment cancellation (reversal)
	6.9. Description of the recurring payment scheme (RP)
	6.10. Saving data of the payer's card
	6.11. Using tokens (card tokens) with libraries for mobile applications
	Chapter 7. Reports
	7.1. General information
	7.2. Payments report
	7.3. Transactions report
	7.4. Configuring notifications about successful transactions
	7.5. Sending of acts and details by e-mail
	Chapter 8. Attachments
	3.1. Terms and abbreviations
	3.2. External documents references

